Impairment of sensory organ development in petroleum-exposed zebrafish embryos response of the lateral line system

Alischa Helena Becker^{*,1}, Lisa Baumann², Bianca Dechent¹, Constanze Heinzen³, Bettina Kirchmaier⁴, Virginie Lecaudey³, Jakob

Pfefferle¹, Frederic Strobl⁵, Henner Hollert¹ & Sarah Johann^{*,1}

¹Department Evolutionary Ecology & Environmental Toxicology (E³T), Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany | ²Section Environmental Health & Toxicology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands | ³Department of Developmental Biology of Vertebrates, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany | ⁴Department of Molecular and Cellular Neuroscience, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany | ⁵Department of Physical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

*corresponding authors: alischabecker@stud.uni-frankfurt.de, johann@bio.uni-frankfurt.de

Background & Motivation

- **Increasing demand for crude oil** \rightarrow huge and small diffuse **oil spills** pose a severe risk to the aquatic environment^[1]
- **Dispersants:** oil spill response measure \rightarrow formation of oil droplets \rightarrow increased bioavailability
- Crude oil exposure \rightarrow strong effects on the cardiovascular ^[2] and visual system ^[3] \rightarrow other sensory organs may be affected
- Lateral line system (LLS): emerging endpoint in ecotoxicology & involvement in a multitude of behavioral traits ^[4]
- Aim: investigation of oil-induced impairments on the LLS as a sensitive endpoint in neuro-

Buchmann Institute for Molecular Life Sciences

Materials

<u>Water-accomodated fractions (WAF):</u>

(low-energy WAF): Naphthenic North Sea (NNS) crude oil Stock 1:50 (w/v)

CEWAF

WAF): Finasol[®] OSR

51/NNS crude oil

Stock 1:200 (w/v)

(high-energy WAF): Finasol[®] OSR 51 (dispersant) Stock 1:2000 (w/v)

(*Danio rerio* exposure concentrations $\leq EC_5$)

Neuromasts

Conclusion & Next Steps

Effects on the lateral line system of zebrafish embryos

- Reduced number of neuromasts after LEWAF/CEWAF (48 hpf) and HEWAF (48 & 72 hpf) exposure
- Increase in hair cell mitochondria area and hair cell nuclei
- Next step: completing hair cell examinations
- \rightarrow Contribution to a better understanding of specific sensory system impairments

Future work: understanding crude oil impact on embryonic motor behavior

- Background: effects on spontanous tail coiling after LEWAF/HEWAF exposure (Fig. 4) \rightarrow indicator for developmental neurotoxicity
- Next step: assessment of primary (Fig. 5) and secondary motorneuron development
- Aim: deeper insight into xenobiotic-induced effects on neurodevelopment

Fig. 4 Spontaneous tail coiling in 24 hpf old

zebrafish embryos exposed to LEWAF, CEWAF

or HEWAF. Individal values (n = 53 - 113),

mean (+), median (line) and SD (error bars).

Fig. 5 Neuropilin 1a (nrp1a) expression highlights caudal primary motorneurons (green) in a pan-neuronal reporter (xla.tubb) background (red) in 24 and 52 hpf old nrp1a:eGFP/xla.tubb:DsRed double transgenic zebrafish embryos. Images of untreated *D. rerio* embryos.

GOETHE

UNIVERSITÄT

^[1] Fritt-Rasmussen, Janne, et al. "Heavy Fuel Oil (HFO): A review of fate and behaviour of HFO spills in cold seawater, including biodegradation, environmental effects and oil spill response." (2018). |^[2] Pasparakis, Christina, et al. "Physiological impacts of Deepwater Horizon oil on fish." Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 224 (2019): 108558. [3] Magnuson, Jason T., et al. "Effects of Deepwater Horizon crude oil on ocular development in two estuarine fish species, red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus)." Ecotoxicology and environmental safety 166 (2018): 186-191. [4] Stengel, Daniel, Florian Zindler, and Thomas Braunbeck. "An optimized method to assess ototoxic effects in the lateral line of zebrafish (Danio rerio) embryos." Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 193 (2017): 18-29.

