

NORMAN WORKSHOP ON CHEMICAL POLLUTANTS AND BIODIVERSITY 6th December 2023, Goethe University

Unveiling the chemical fingerprints in organisms from different trophic levels using advanced HRMS workflows: The case study of the **Baltic Sea**

<u>K. Diamanti¹</u>, <u>G. Gkotsis¹</u>, E. Panagopoulou¹, M.-C. Nika¹, N. Alygizakis^{1,2}, K. Vasilatos¹, N. Boinis¹, N. Boinis¹, N. Maragou¹, P. Oswald², S. Rohner³, U. Siebert³, F. Reif⁴, M. Dähne⁴, S. Persson⁵, A. Galatius⁶, I. Pawliczka⁷, A. Künitzer⁸, E. Vähä⁹, A. Lastumäki⁹, A. Grajewska¹⁰, T. Zalewska¹⁰, E. Usin¹¹, M. Laht¹¹, J. Mitrulevičiūtė¹², N. Suhareva¹³, L. Brokmar⁵, C. Engelke¹⁴, H. Johansson¹⁵, H. Ruedel¹⁶, U. Pirntke⁸, D. Frank-Kamenetsky¹⁷, M. M. Larsen¹⁸, J. Slobodnik², N. S. Thomaidis¹

¹National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; ² Environmental Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany; ⁴ German Oceanographic Museum, Katharinenberg 16-20, 18439 Stralsund, Germany; ⁵ Naturhistoriska riksmuseet / Swedish Museum of Natural History, Frescativägen 40, SE-104 05 Stockholm, Sweden; ⁶ Aarhus University, Høegh-Guldbergs Gade 4A 8000 Aarhus, Denmark; ⁷ University of Gdańsk, street Bażyńskiego 8, 80-309 Gdańsk, Poland; 8 Umweltbundesamt, Wörlitzer Platz 1 06844, Dessau-Roßlau, Germany; 9 Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland; 10 Institute of Meteorology and Water Management (IMGW-PIB), Podleśna 61, 01-673 Warszawa, Poland; ¹¹ Estonian Environmental Research Centre, Marja 4d, 10617 Tallinn, Estonia; ¹² Lithuania; ¹³ Latvian Institute of Aquatic Ecology, Voleru iela 2, Kurzemes rajons, Rīga, LV-1007, Latvia; ¹⁴ State Office for the Environment, Nature Conservation and Geology Mecklenburg-Vorpommern (LUNG MV), Goldberger Str. 12b, 18273 Güstrow, Germany; ¹⁵ Swedish Agency for Marine and Water Platz 1, 06844 Dessau-Roßlau, Deutschland; ¹⁷ HELCOM Secretariat, Katajanokanlaituri 6 B, 00160 Helsinki, Finland; ¹⁸ Aarhus University, Nordre Ringgade 1, 8000 Aarhus C, Denmark

- *PBT: Persistent, Bioaccumulative, Toxic

- ✓ insights into wider **ecological health**

- Archiving of the HRMS data in the NORMAN Digital Sample Freezing Platform (DSFP) for future retrospective screening

Pharmaceuticals & TPs Per- and Polyfluoroalkyl Substances (PFAS) Industrial Chemicals Coffee related compounds

Personal Care Products & TPs Plant Protection Products & TPs Tobacco related compounds Sweeteners

Wide-scope target analysis revealed the presence of 99 chemicals in the organisms collected from the Baltic Sea.

- 28% industrial chemicals, 22% pharmaceuticals, 20% plant protection products, 13% PFAS, 17% other.
- 15 (bio)TPs were detected in the analyzed organisms, underlining the importance of HRMS-based monitoring.
- One order of magnitude higher concentration levels observed in the **apex predators** compared with their prey.
- Indications of chemicals with possible bioaccumulative properties
- Apex predators \rightarrow ideal human simulators
- 23 compounds were determined in organisms from <u>both high (marine mammals)</u> and low (fish, mollusks) trophic levels.
- Most of them were conventional micropollutants [6 PFAS -PFOA, PFNA, PFDA, PFUA, PFUA, PFHxS, PFOS-, 4 PCBs -PCB 101, PCB 138, PCB 153, PCB 52-, 2,4-DDT and it's TP 4,4-DDE, as well as Hexachlorobenzene].

Suspect screening

- **151** additional organic micropollutants were tentatively identified in the tested marine biota samples
- Identification levels 2A & 3 based on *Schymanski et al., 2014*
- **Industrial Chemicals** (mainly), **Pharmaceuticals**
- Semiquantification of the identified substances

Conclusions

- First extensive HRMS-based biomonitoring survey using wildlife in the Baltic Sea ecosystem
 - Unique depiction of the chemicals' spatial distribution in the Baltic Sea
 - Insights in the status of the Baltic Sea ecosystem's quality
- Unravelling the presence of organic micropollutants and their (bio)transformation products
- Indications for possible biomagnification of chemicals through the food web to higher trophic levels
- Risk assessment and inclusion of prioritized chemicals in future monitoring programmes
- Upload of identified chemicals in NORMAN EMPODAT and digital storage of acquired HRMS data (specimens' library)

